Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Microbes Infect ; : 105303, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38272253

ABSTRACT

The life cycle of enveloped viruses is closely linked to host-cell lipids. However, changes in lipid metabolism during infections with the tick-borne encephalitis virus (TBEV) have not been described. TBEV is a medically important orthoflavivirus, which is endemic to many parts of Europe and Asia. In the present study, we performed targeted lipidomics with HPLC-MS/MS to evaluate changes in phospholipid and sphingolipid concentrations in TBEV-infected human neuronal SK-N-SH cells. TBEV infections significantly increased phosphatidylcholine, phosphatidylinositol, and phosphatidylserine levels within 48 h post-infection (hpi). Sphingolipids were slightly increased in dihydroceramides within 24 hpi. Later, at 48 hpi, the contents of sphinganine, dihydroceramides, ceramides, glucosylceramides, and ganglioside GD3 were elevated. On the other hand, sphingosine-1-phosphate content was slightly reduced in TBEV-infected cells. Changes in sphingolipid concentrations were accompanied by suppressed expression of a majority of the genes linked to sphingolipid and glycosphingolipid metabolism. Furthermore, we found that a pharmacological inhibitor of sphingolipid synthesis, fenretinide (4-HPR), inhibited TBEV infections in SK-N-SH cells. Taken together, our results suggested that both structural and signaling functions of lipids could be affected during TBEV infections. These changes might be connected to virus propagation and/or host-cell defense.

2.
Sci Rep ; 13(1): 19337, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37935819

ABSTRACT

Ultraviolet irradiation is an effective method of virus and bacteria inactivation. The dose of UV-C light necessary for baculovirus inactivation by measurement of fluorescent GFP protein produced by baculovirus expression system after the irradiation of baculovirus culture in doses ranging from 3.5 to 42 J/m2 was determined. At a dose of 36.8 J/m2, only 0.5% of GFP-expressing cells were detected by flow cytometry and confocal microscopy. The stability of purified VP1-PCV2bCap protein produced by baculovirus expression system was analyzed after the irradiation at doses ranging from 3.5 to 19.3 J/m2. Up to the dose of 11 J/m2, no significant effect of UV-C light on the stability of VP1-PCV2bCap was detected. We observed a dose-dependent increase in VP1-PCV2bCap-specific immune response in BALB/c mice immunized by recombinant protein sterilized by irradiation in dose 11 J/m2 with no significant difference between vaccines sterilized by UV-C light and filtration. A substantial difference in the production of VP1-PCV2bCap specific IgG was observed in piglets immunized with VP1-PCV2bCap sterilized by UV-C in comparison with protein sterilized by filtration in combination with the inactivation of baculovirus by binary ethylenimine. UV-C irradiation represents an effective method for vaccine sterilization, where commonly used methods of sterilization are not possible.


Subject(s)
Vaccines, Synthetic , Viruses , Mice , Animals , Swine , Sterilization , Recombinant Proteins/genetics , Ultraviolet Rays
3.
Virus Res ; 334: 199158, 2023 09.
Article in English | MEDLINE | ID: mdl-37339718

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has prompted great interest in novel broad-spectrum antivirals, including perylene-related compounds. In the present study, we performed a structure-activity relationship analysis of a series of perylene derivatives, which comprised a large planar perylene residue, and structurally divergent polar groups connected to the perylene core by a rigid ethynyl or thiophene linker. Most of the tested compounds did not exhibit significant cytotoxicity towards multiple cell types susceptible to SARS-CoV-2 infection, and did not change the expressions of cellular stress-related genes under normal light conditions. These compounds showed nanomolar or sub-micromolar dose-dependent anti-SARS-CoV-2 activity, and also suppressed the in vitro replication of feline coronavirus (FCoV), also termed feline infectious peritonitis virus (FIPV). Perylene compounds exhibited high affinity for liposomal and cellular membranes, and efficiently intercalated into the envelopes of SARS-CoV-2 virions, thereby blocking the viral-cell fusion machinery. Furthermore, the studied compounds were demonstrated to be potent photosensitizers, generating reactive oxygen species (ROS), and their anti-SARS-CoV-2 activities were considerably enhanced after irradiation with blue light. Our results indicated that photosensitization is the major mechanism underlying the anti-SARS-CoV-2 activity of perylene derivatives, with these compounds completely losing their antiviral potency under red light. Overall, perylene-based compounds are broad-spectrum antivirals against multiple enveloped viruses, with antiviral action based on light-induced photochemical damage (ROS-mediated, likely singlet oxygen-mediated), causing impairment of viral membrane rheology.


Subject(s)
COVID-19 , Perylene , Animals , Cats , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , SARS-CoV-2 , Singlet Oxygen , Perylene/pharmacology , Viral Envelope , Reactive Oxygen Species , Virion
4.
Sci Total Environ ; 815: 151967, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-34843781

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) may interact with multiple intracellular receptors and related signaling pathways. We comprehensively evaluated the toxicity profiles of six environmentally relevant PAHs differing in structure, genotoxicity and their ability to activate the aryl hydrocarbon receptor (AhR). We focused particularly on their impact on intracellular hormone-, xenobiotic- and lipid-sensing receptors, as well as on cellular stress markers, combining a battery of human reporter gene assays and qRT-PCR evaluation of endogenous gene expression in human hepatocyte-like HepaRG cells, with LC/MS-MS analysis of cellular sphingolipids. The effects of PAHs included: activation of estrogen receptor α (in case of fluoranthene (Fla), pyrene (Pyr), benz[a]anthracene (BaA), benzo[a]pyrene (BaP)), suppression of androgen receptor activity (Fla, BaA, BaP and benzo[k]fluoranthene (BkF)), enhancement of dexamethasone-induced glucocorticoid receptor activity (chrysene (Chry), BaA, and BaP), and potentiation of triiodothyronine-induced thyroid receptor α activity (all tested PAHs). PAHs also induced transcription of endogenous gene targets of constitutive androstane receptor (Fla, Pyr), or repression of target genes of pregnane X receptor and peroxisome proliferator-activated receptor α (in case of the AhR-activating PAHs - Chry, BaA, BaP, and BkF) in HepaRG cells. In the same cell model, the AhR agonists reduced the expression of glucose metabolism genes (PCK1, G6PC and PDK4), and they up-regulated levels of glucosylceramides, together with a concomitant induction of expression of UGCG, glucosylceramide synthesis enzyme. Finally, both BaP and BkF were found to induce expression of early stress and genotoxicity markers: ATF3, EGR1, GDF15, CDKN1A/p21, and GADD45A mRNAs, while BaP alone increased levels of IL-6 mRNA. Overall, whereas low-molecular-weight PAHs exerted significant effects on nuclear receptors (with CYP2B6 induction observed already at nanomolar concentrations), the AhR activation by 4-ring and 5-ring PAHs appeared to be a key mechanism underlying their impact on nuclear receptor signaling, endogenous metabolism and induction of early stress and genotoxicity markers.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Benzo(a)pyrene , Humans , Polycyclic Aromatic Hydrocarbons/toxicity , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Signal Transduction , Xenobiotics
5.
Sci Rep ; 10(1): 4780, 2020 03 16.
Article in English | MEDLINE | ID: mdl-32179785

ABSTRACT

Gadolinium (Gd)-based contrast agents are extensively used for magnetic resonance imaging (MRI). Liposomes are potential nanocarrier-based biocompatible platforms for development of new generations of MRI diagnostics. Liposomes with Gd-complexes (Gd-lip) co-encapsulated with thrombolytic agents can serve both for imaging and treatment of various pathological states including stroke. In this study, we evaluated nanosafety of Gd-lip containing PE-DTPA chelating Gd+3 prepared by lipid film hydration method. We detected no cytotoxicity of Gd-lip in human liver cells including cancer HepG2, progenitor (non-differentiated) HepaRG, and differentiated HepaRG cells. Furthermore, no potential side effects of Gd-lip were found using a complex system including general biomarkers of toxicity, such as induction of early response genes, oxidative, heat shock and endoplasmic reticulum stress, DNA damage responses, induction of xenobiotic metabolizing enzymes, and changes in sphingolipid metabolism in differentiated HepaRG. Moreover, Gd-lip did not show pro-inflammatory effects, as assessed in an assay based on activation of inflammasome NLRP3 in a model of human macrophages, and release of eicosanoids from HepaRG cells. In conclusion, this in vitro study indicates potential in vivo safety of Gd-lip with respect to hepatotoxicity and immunopathology caused by inflammation.


Subject(s)
Contrast Media , Drug Carriers , Gadolinium DTPA , Hepatocytes/drug effects , Liposomes , Macrophages/drug effects , Magnetic Resonance Imaging , Phosphatidylethanolamines , Cells, Cultured , Fibrinolytic Agents , Gadolinium DTPA/adverse effects , Gadolinium DTPA/toxicity , Humans , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Nanoparticles , Phosphatidylethanolamines/adverse effects , Phosphatidylethanolamines/toxicity
6.
Nanomaterials (Basel) ; 10(3)2020 Feb 27.
Article in English | MEDLINE | ID: mdl-32120988

ABSTRACT

Carbon-based nanomaterials (C-BNM) have recently attracted an increased attention as the materials with potential applications in industry and medicine. Bioresistance and proinflammatory potential of C-BNM is the main obstacle for their medicinal application which was documented in vivo and in vitro. However, there are still limited data especially on graphene derivatives such as graphene platelets (GP). In this work, we compared multi-walled carbon nanotubes (MWCNT) and two different types of pristine GP in their potential to activate inflammasome NLRP3 (The nod-like receptor family pyrin domain containing 3) in vitro. Our study is focused on exposure of THP-1/THP1-null cells and peripheral blood monocytes to C-BNM as representative models of canonical and alternative pathways, respectively. Although all nanomaterials were extensively accumulated in the cytoplasm, increasing doses of all C-BNM did not lead to cell death. We observed direct activation of NLRP3 via destabilization of lysosomes and release of cathepsin B into cytoplasm only in the case of MWCNTs. Direct activation of NLRP3 by both GP was statistically insignificant but could be induced by synergic action with muramyl dipeptide (MDP), as a representative molecule of the family of pathogen-associated molecular patterns (PAMPs). This study demonstrates a possible proinflammatory potential of GP and MWCNT acting through NLRP3 activation.

7.
Int J Mol Sci ; 20(24)2019 Dec 13.
Article in English | MEDLINE | ID: mdl-31847237

ABSTRACT

Effects of airborne particles on the expression status of markers of cellular toxic stress and on the release of eicosanoids, linked with inflammation and oxidative damage, remain poorly characterized. Therefore, we proposed a set of various methodological approaches in order to address complexity of PM0.5-induced toxicity. For this purpose, we used a well-characterized model of A549 pulmonary epithelial cells exposed to a non-cytotoxic concentration of ambient aerosol particle fraction PM0.5 for 24 h. Electron microscopy confirmed accumulation of PM0.5 within A549 cells, yet, autophagy was not induced. Expression profiles of various cellular stress response genes that have been previously shown to be involved in early stress responses, namely unfolded protein response, DNA damage response, and in aryl hydrocarbon receptor (AhR) and p53 signaling, were analyzed. This analysis revealed induction of GREM1, EGR1, CYP1A1, CDK1A, PUMA, NOXA and GDF15 and suppression of SOX9 in response to PM0.5 exposure. Analysis of eicosanoids showed no oxidative damage and only a weak anti-inflammatory response. In conclusion, this study helps to identify novel gene markers, GREM1, EGR1, GDF15 and SOX9, that may represent a valuable tool for routine testing of PM0.5-induced in vitro toxicity in lung epithelial cells.


Subject(s)
Air Pollutants/toxicity , Epithelial Cells/metabolism , Gene Expression Regulation/drug effects , Lung/metabolism , Particulate Matter/toxicity , Signal Transduction/drug effects , A549 Cells , Aerosols , Epithelial Cells/pathology , Humans , Lung/pathology
8.
Mol Pharm ; 16(8): 3441-3451, 2019 08 05.
Article in English | MEDLINE | ID: mdl-31184896

ABSTRACT

Nanodiamonds (ND), especially fluorescent NDs, represent potentially applicable drug and probe carriers for in vitro/in vivo applications. The main purpose of this study was to relate physical-chemical properties of carboxylated NDs to their intracellular distribution and impact on membranes and cell immunity-activation of inflammasome in the in vitro THP-1 cell line model. Dynamic light scattering, nanoparticle tracking analysis, and microscopic methods were used to characterize ND particles and their intracellular distribution. Fluorescent NDs penetrated the cell membranes by both macropinocytosis and mechanical cutting through cell membranes. We proved accumulation of fluorescent NDs in lysosomes. In this case, lysosomes were destabilized and cathepsin B was released into the cytoplasm and triggered pathways leading to activation of inflammasome NLRP3, as detected in THP-1 cells. Activation of inflammasome by NDs represents an important event that could underlie the described toxicological effects in vivo induced by NDs. According to our knowledge, this is the first in vitro study demonstrating direct activation of inflammasome by NDs. These findings are important for understanding the mechanism(s) of action of ND complexes and explain the ambiguity of the existing toxicological data.


Subject(s)
Inflammasomes/drug effects , Intravital Microscopy/methods , Lysosomes/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nanodiamonds/administration & dosage , Cathepsin B/immunology , Cathepsin B/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Dynamic Light Scattering , Fluorescence , Humans , Inflammasomes/immunology , Inflammasomes/metabolism , Lysosomes/immunology , Lysosomes/metabolism , Lysosomes/ultrastructure , Microscopy, Atomic Force , Microscopy, Confocal , Microscopy, Electron , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Nanodiamonds/chemistry , Pinocytosis , THP-1 Cells
9.
Toxicol Sci ; 134(2): 258-70, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23690540

ABSTRACT

Plakoglobin is an important component of intercellular junctions, including both desmosomes and adherens junctions, which is known as a tumor suppressor. Although mutations in the plakoglobin gene (Jup) and/or changes in its protein levels have been observed in various disease states, including cancer progression or cardiovascular defects, the information about endogenous or exogenous stimuli orchestrating Jup expression is limited. Here we show that the aryl hydrocarbon receptor (AhR) may regulate Jup expression in a cell-specific manner. We observed a significant suppressive effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a model toxic exogenous activator of the AhR signaling, on Jup expression in a variety of experimental models derived from rodent tissues, including contact-inhibited rat liver progenitor cells (where TCDD induces cell proliferation), rat and mouse hepatoma cell models (where TCDD inhibits cell cycle progression), cardiac cells derived from the mouse embryonic stem cells, or cardiomyocytes isolated from neonatal rat hearts. The small interfering RNA (siRNA)-mediated knockdown of AhR confirmed its role in both basal and TCDD-deregulated Jup expression. The analysis of genomic DNA located ~2.5kb upstream of rat Jup gene revealed a presence of evolutionarily conserved AhR binding motifs, which were confirmed upon their cloning into luciferase reporter construct. The siRNA-mediated knockdown of Jup expression affected both proliferation and attachment of liver progenitor cells. The present data indicate that the AhR may contribute to negative regulation of Jup gene expression in rodent cellular models, which may affect cell adherence and proliferation.


Subject(s)
Gene Expression Regulation/physiology , Receptors, Aryl Hydrocarbon/physiology , gamma Catenin/genetics , Animals , Base Sequence , Cell Adhesion , Cell Line , Cell Proliferation , Cloning, Molecular , DNA Primers , Down-Regulation , Polychlorinated Dibenzodioxins/pharmacology , Promoter Regions, Genetic , Rats , Rats, Inbred F344 , Real-Time Polymerase Chain Reaction
10.
Arch Toxicol ; 87(3): 491-503, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23085979

ABSTRACT

The aryl hydrocarbon receptor (AhR) contributes to the control of cell-to-cell communication, cell adhesion, migration or proliferation. In the present study, we investigated the regulation of connexin43 (Cx43) and Cx43-mediated gap junctional intercellular communication (GJIC) during the AhR-dependent disruption of contact inhibition in non-tumorigenic liver epithelial cells. The contact inhibition of cell proliferation is a process restricting the cell division of confluent non-transformed cells, which is frequently abolished in cancer cells; however, the mechanisms contributing to its disruption are still only partially understood. Disruption of contact inhibition, which was induced by toxic AhR ligands 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or polycyclic aromatic hydrocarbons in epithelial WB-F344 cells, reduced Cx43 protein levels, possibly via enhanced proteasomal degradation, significantly decreased the amount of gap junction plaques and downregulated GJIC, in an AhR-dependent manner. Although both intracellular and membrane Cx43 pools were markedly reduced in cells released from contact inhibition by TCDD, siRNA-mediated Cx43 knock-down was not sufficient to stimulate proliferation in contact-inhibited cells. Our data suggest that downregulation of Cx43/GJIC in non-transformed epithelial cells is an inherent part of disruption of contact inhibition, which occurs at the post-transcriptional level. This process runs in parallel with alterations of other forms of cell-to-cell communication, thus suggesting that toxic AhR agonists may simultaneously abrogate contact inhibition and reduce GJIC, two essential mechanisms linked to deregulation of cell-to-cell communication during tumor promotion and progression.


Subject(s)
Carcinogens/toxicity , Cell Communication/drug effects , Connexin 43/metabolism , Contact Inhibition/drug effects , Epithelial Cells/drug effects , Gap Junctions/drug effects , Liver/drug effects , Receptors, Aryl Hydrocarbon/agonists , Signal Transduction/drug effects , Animals , Benz(a)Anthracenes/toxicity , Cell Line , Cell Proliferation , Cell Transformation, Neoplastic/chemically induced , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Connexin 43/genetics , Dose-Response Relationship, Drug , Down-Regulation , Epithelial Cells/metabolism , Epithelial Cells/pathology , Fluorenes/toxicity , Gap Junctions/metabolism , Gap Junctions/pathology , Gene Knockdown Techniques , Indoles/pharmacology , Ligands , Liver/metabolism , Liver/pathology , Liver Neoplasms/chemically induced , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Phloroglucinol/analogs & derivatives , Phloroglucinol/pharmacology , Phosphorylation , Polychlorinated Dibenzodioxins/toxicity , Proteasome Endopeptidase Complex/metabolism , RNA Interference , Rats , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Time Factors , Transfection
11.
Toxicol Sci ; 121(1): 88-100, 2011 May.
Article in English | MEDLINE | ID: mdl-21357386

ABSTRACT

The toxic equivalency concept used for the risk assessment of polychlorinated biphenyls (PCBs) is based on the aryl hydrocarbon receptor (AhR)-mediated toxicity of coplanar dioxin-like (DL) PCBs. Most PCBs in the environment, however, are non-dioxin-like (NDL) PCBs that cannot adopt a coplanar structure required for AhR activation. For NDL-PCBs, no generally accepted risk concept is available because their toxicity is insufficiently characterized. Here, we systematically determined in vitro toxicity profiles for 24 PCBs regarding 10 different mechanisms of action. Prior to testing, NDL-PCB standards were purified to remove traces of DL compounds. All NDL-PCBs antagonized androgen receptor activation and inhibited gap junctional intercellular communication (GJIC). Lower chlorinated NDL-PCBs were weak estrogen receptor (ER) agonists, whereas higher chlorinated NDL-PCBs were weak ER antagonists. Several NDL-PCBs inhibited estradiol-sulfotransferase activity and bound to transthyretin (TTR) but with much weaker potencies than reported for hydroxylated PCB metabolites. AhR-mediated expression of uridine-glucuronyl transferase isozyme UGT1A6 was induced by DL-PCBs only. Hierarchical cluster analysis of the toxicity profiles yielded three separate clusters of NDL-PCBs and a fourth cluster of reference DL-PCBs. Due to small differences in relative potency among congeners, the highly abundant indicator PCBs 28, 52, 101, 118, 138, 153, and 180 also contributed most to the antiandrogenic, (anti)estrogenic, antithyroidal, tumor-promoting, and neurotoxic potencies calculated for PCB mixtures reported in human samples, whereas the most potent AhR-activating DL-PCB-126 contributed at maximum 0.2% to any of these calculated potencies. PCB-168 is recommended as an additional indicator congener, given its relatively high abundance and antiandrogenic, TTR-binding, and GJIC-inhibiting potencies.


Subject(s)
Polychlorinated Biphenyls/toxicity , Humans , In Vitro Techniques , Polychlorinated Biphenyls/administration & dosage
12.
Toxicol Sci ; 107(1): 9-18, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18832185

ABSTRACT

One of the toxic effects of non-dioxin-like polychlorinated biphenyls (NDL-PCBs) is the acute inhibition of gap junctional intercellular communication (GJIC), an event possibly associated with tumor promotion. The model NDL-PCB-2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153)-induces a sustained GJIC inhibition in rat liver epithelial WB-F344 cells. As this effect might be related to deregulation of connexin 43 (Cx43) synthesis, trafficking, or degradation, we investigated the impact of PCB 153 on these events. Although PCB 153 had no effect on Cx43 mRNA levels, it induced a gradual loss of Cx43 protein and significantly decreased the amount of gap junction plaques in plasma membrane. PCB 153 contributed to extracellular signal-regulated kinases 1 and 2 (ERK1/2)-dependent accumulation of hyperphosphorylated Cx43-P3 form, thus indicating that ERK1/2 activation by PCB 153 might contribute to its effects on Cx43 internalization or degradation. Inhibition of either proteasomes or lysosomes with their specific inhibitors largely restored total Cx43 protein levels, thus suggesting that both proteasomes and lysosomes may participate in the PCB 153-enhanced Cx43 internalization and degradation. However, neither the proteasomal nor the lysosomal inhibitors restored normal GJIC or number/size of gap junction plaques. Finally, PCB 153 also interfered with restoration of gap junction plaques following the inhibition of Cx43 transport to plasma membrane. Taken together, multiple modes of action seem to contribute to downregulation of Cx43 in PCB 153-treated rat liver epithelial cells. The enhanced degradation of Cx43, together with persistent inhibition of GJIC, might contribute to tumor-promoting effects of NDL-PCBs.


Subject(s)
Connexin 43/metabolism , Gap Junctions/drug effects , Lysosomes/drug effects , Polychlorinated Biphenyls/pharmacology , Proteasome Endopeptidase Complex/drug effects , Analysis of Variance , Animals , Cell Communication/drug effects , Cell Line , Cell Membrane/drug effects , Connexin 43/genetics , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Extracellular Signal-Regulated MAP Kinases/metabolism , Gap Junctions/metabolism , Leupeptins/pharmacology , Liver/metabolism , Lysosomes/metabolism , Metabolic Networks and Pathways/drug effects , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors , Rats
13.
Toxicol Lett ; 180(3): 212-21, 2008 Aug 28.
Article in English | MEDLINE | ID: mdl-18634860

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are an important group of environmental pollutants, known for their mutagenic and carcinogenic activities. Many PAHs are aryl hydrocarbon receptor (AhR) ligands and several recent studies have suggested that PAHs or their metabolites may activate estrogen receptors (ER). The present study investigated possible estrogenic/antiestrogenic effects of abundant environmental contaminants benzo[a]pyrene (BaP), benz[a]anthracene (BaA), fluoranthene (Fla) and benzo[k]fluoranthene (BkF) in vivo, using the immature rat uterotrophic assay. The present results suggest that BaA, BaP and Fla behaved as estrogen-like compounds in immature Wistar rats, when applied for 3 consecutive days at 10mg/kg/day, as documented by a significant increase of uterine weight and hypertrophy of luminal epithelium. These effects were likely to be mediated by ERalpha, a major subtype of ER present in uterus, as they were inhibited by treatment with ER antagonist ICI 182,780. BaA, the most potent of studied PAHs, induced a significant estrogenic effect within a concentration range 0.1-50mg/kg/day; however, it did not reach the maximum level induced by reference estrogens. The proposed antiestrogenicity of the potent AhR agonist BkF was not confirmed in the present in vivo study; the exposure to BkF did not significantly affect the uterine weight, although a weak suppression of ERalpha immunostaining was observed in luminal and glandular epithelium, possibly related to its AhR-mediated activity. The PAHs under study did not induce marked genotoxic damage in uterine tissues, as documented by the lack of Ser-15-phoshorylated p53 protein staining. With the exception of Fla, all three remaining compounds increased CYP1-dependent monooxygenation activities in liver at the doses used, suggesting that the potential tissue-specific antiestrogenic effects of PAHs mediated by metabolization of 17beta-estradiol also cannot be excluded. Taken together, these environmentally relevant PAHs induced estrogenic effects in vivo, which might affect their toxic impact and carcinogenicity.


Subject(s)
Endocrine Disruptors/toxicity , Environmental Pollutants/toxicity , Estrogens/biosynthesis , Polycyclic Aromatic Hydrocarbons/toxicity , Uterus/metabolism , Animals , Cytochrome P-450 CYP1A1/metabolism , Epithelium/drug effects , Estradiol/metabolism , Estrogen Receptor alpha/metabolism , Female , Hydroxylation , Immunohistochemistry , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Organ Size/drug effects , Ovary/drug effects , Phosphorylation , Rats , Rats, Wistar , Tumor Suppressor Protein p53/metabolism , Uterus/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...